Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.16.22276483

ABSTRACT

Background SARS-CoV-2 serologic surveys estimate the proportion of the population with antibodies against historical variants which nears 100% in many settings. New analytic approaches are required to exploit the full information in serosurvey data. Method Using a SARS-CoV-2 anti-Spike (S) protein chemiluminescent microparticle assay, we attained a semi-quantitative measurement of population IgG titres in serial cross-sectional monthly samples of routine blood donations across seven Brazilian state capitals (March 2021-November 2021). In an ecological analysis (unit of analysis: age-city-calendar month) we assessed the relative contributions of prior attack rate and vaccination to antibody titre in blood donors. We compared blood donor anti-S titre across the seven cities during the growth phase of the Delta variant of concern (VOC) and use this to predict the resulting age-standardized incidence of severe COVID-19 cases. Results On average we tested 780 samples per month in each location. Seroprevalence rose to >95% across all seven capitals by November 2021. Driven proximally by vaccination, mean antibody titre increased 16-fold over the study. The extent of prior natural infection shaped this process, with the greatest increases in antibody titres occurring in cities with the highest prior attack rates. Mean anti-S IgG was a strong predictor (adjusted R2 =0.89) of the number of severe cases caused by the Delta VOC in the seven cities. Conclusions Semi-quantitative anti-S antibody titres are informative about prior exposure and vaccination coverage and can inform on the potential impact of future SARS-CoV-2 variants. Summary In the face of near 100% SARS-CoV-2 seroprevalence, we show that average semi-quantitative anti-S titre predicted the extent of the Delta variant’s spread in Brazil. This is a valuable metric for future seroprevalence studies.


Subject(s)
COVID-19
3.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1363260.v1

ABSTRACT

There are large differences in the shape and size of regional SARS-CoV-2 epidemics in Brazil. Here we tested monthly blood donation samples for IgG antibodies from March 2020 to March 2021 in eight of Brazil’s most populous cities. There was large variation in the inferred attack rate adjusted for seroreversion across cities, and seroprevalence was consistently smaller in women and donors older than 55 years. The age-specific infection fatality rate differed between cities and consistently increased with age. The infection hospitalisation rate (IHR) increased significantly during the gamma-dominated second wave in Manaus, suggesting increased morbidity of the Gamma VOC compared to previous variants circulating in Manaus. The higher disease penetrance associated with the health system’s collapse increased the overall IFR by a minimum factor of 2.91 (95% CrI 2.43–3.53). These results demonstrate large heterogeneity in epidemic spread and highlight the utility of blood donor serosurveillance to monitor SARS-CoV-2 epidemics.


Subject(s)
COVID-19
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.31.20184895

ABSTRACT

BACKGROUNDEfficacy of COVID-19 convalescent plasma (CCP) to treat COVID-19 is hypothesized to be associated with the concentration of neutralizing antibodies (nAb) to SARS-CoV-2. High capacity serologic assays detecting binding antibodies (bAb) have been developed, nAb assays are not adaptable to high-throughput testing. We sought to determine the effectiveness of using surrogate bAb signal-to-cutoff ratios (S/CO) in predicting nAb titers using a pseudovirus reporter viral particle neutralization (RVPN) assay. METHODSCCP donor serum collected by 3 US blood collectors was tested with a bAb assay (Ortho Clinical Diagnostics VITROS Anti-SARS-CoV-2 Total, CoV2T) and a nAb RVPN assay. CoV2T prediction effectiveness at S/CO thresholds was evaluated for RVPN nAb NT50 titers using receiver operating characteristic analysis. RESULTS753 CCPs were tested with median CoV2T S/CO of 71.2 and median NT50 of 527.5. Proportions of CCP donors with NT50 over various target nAb titers were 86% [≥]1:80, 76% [≥]1:160, and 62%[≥]1:320. Increasing CoV2Ts reduced the sensitivity to predict NT50 titers, while specificity to identify those below thresholds increased. As the targeted NT50 increased, the positive predictive value fell with reciprocal increase in negative predictive value. S/CO thresholds were thus less able to predict target NT50 titers. CONCLUSIONSelection of a clinically effective nAb titer will impact availability of CCP. Product release with CoV2T assay S/CO thresholds must balance the risk of releasing products below target nAb titers with the cost of false negatives. A two-step testing scheme may be optimal, with nAb testing on CoV2T samples with S/COs below thresholds.


Subject(s)
COVID-19
5.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-51545.v1

ABSTRACT

CD4 T follicular helper (Tfh) cells are important for the generation of durable and specific humoral protection against viral infections. The degree to which SARS-CoV-2 infection generates Tfh cells and stimulates the germinal center response is an important question as we investigate vaccine options for the current pandemic. Here we report that SARS-CoV-2 infection resulted in transient accumulation of pro-inflammatory monocytes and proliferating Tfh cells with a Th1 profile in peripheral blood. CD4 helper cell responses were skewed predominantly toward a Th1 response in blood, lung, and lymph nodes. We observed the generation of germinal center Tfh cells specific for the SARS-CoV-2 spike (S) and nucleocapsid (N) proteins, and a corresponding early appearance of antiviral serum IgG antibodies. Our data suggest that a vaccine promoting Th1-type Tfh responses that target the S protein may lead to protective immunity.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL